

Find the probability of drawing out

(i) a red cube from the box, and[2](ii) a cube that is not yellow.[2]

- 3. The length of a rectangle is 15 cm, the breadth is x+2 cm and the diagonal is 3x-1 cm.
 - (a) Form an equation in terms of x and show that it reduces to [2] $4x^2 - 5x - 114 = 0$,
 - (b) Solve the equation to find the value of x, [2]
 - (c) Hence, find the area of the rectangle. [2]

4. (a) Solve the following simultaneous equations,

$$2x + 3y = 1.9$$

 $4x + 5y = 3.4$ [4]

- (b) At a games carnival, tickets are sold at \$2.20 for adults and \$1.20 for children. If 120 tickets were sold and \$189 was collected, how many tickets [4] of each kind were sold?
- 5. It is given that $\varepsilon = \{x : x \text{ is an integer and } 1 \le x \le 13\},\$
 - $A = \{x : x \text{ is a factor of } 12\}$ and $B = \{x : x \text{ is a prime number}\}.$ [3](a) List the elements of ε , A and B'.[3](b) Illustrate with a Venn diagram, the sets ε , A and B.[2]
 - (c) Find
 - (i) $(A \cup B)'$, and [1]

6. The table below lists the results of a Mathematics test of 10 students.

13	25	22	9	21	19	7	13	20	11	

(a) Copy and complete the ordered stem-and-leaf diagram below to represent the scores of the 10 students. The first row of the stem-and-leaf diagram has been done for you.

Stem	Leaf
0	79
1	
2	

(**b**) Find the

(i) mean,	[2]
(ii) mode, and	[1]
(iii) median score.	[2]

7. Answer the whole of this question on a single piece of graph paper.

Below is a table of values for the equation 2y = 1 - 3x.

x	-2	0	2
у	а	0.5	b

(a) Find the values of a and b.

[2]

(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of [2]

$$2y = 1 - 3x.$$

(c) From the graph, find the value of *y* when

- (i) x = 1.5, [1]
- (ii) x = -1. [1]

[2]

(d) Draw the line y = -2, and write the coordinates of the point where y = -2meets 2y = 1-3x. [2]

END OF PAPER

Marking Scheme

1(a) (i)
$$ap = q$$

 $a = \frac{q}{p}$ -----(B1)
(ii) $R = m(a + g)$
 $\frac{R}{m} = a + g$ -----(M1)
 $a = \frac{R}{m} - g$ -----(A1)
1(b) (a) Let Joshua's age be x, let Melanie's age be $\frac{3}{4}$ x. -----(M1)
 $\frac{3}{4}x - 2 = \frac{1}{2}(x + 4)$ -----(M1)
 $3x - 8 = 2x + 8$
 $x = 16$ -----(A1)
2(a) (i) P(red disc) = $1 - \frac{3}{4} = \frac{1}{4}$ -----[A1]
(ii) P(green disc) = 0 -----[A1]
(iii) $\frac{3}{4}$ parts \Rightarrow 36 disc
 $\frac{1}{4}$ part $\Rightarrow \frac{1}{3} \times 36$ -----[M1]
=12 red disc -----[A1]
2(b) (i) P(red cube) = $1 - \frac{1}{2} - \frac{1}{3}$ -----[M1]
 $= \frac{1}{6}$ ------[A1]
OR
 $12 c$

(ii) P(not yellow cube) = P(white cube) + P(red cube) = $\frac{1}{2} + \frac{1}{6}$ -----[M1] = $\frac{2}{3}$ -----[A1]

12 cubes → 6 white, 4 yellow, 2 red
(i) P(red) =
$$\frac{2}{12}$$
 -----(M1)
= $\frac{1}{6}$ -----(A1)
(ii) P(not yellow) = $\frac{6+2}{12}$ -----(M1)
= $\frac{2}{3}$ -----(A1)

(a)
$$(x+2)^2 + 15^2 = (3x-1)^2$$
 -----(M1)
 $x^2+4x+4+225=9x^2-6x+1$
 $8x^2-10x-228=0$
 $4x^2-5x-114=0$ -----(A1)

3

4

(b)
$$(4x+19)(x-6)=0$$
 -----(M1)
x=-4.75 (rej) or x=6 -----(A1)

(c) Area of rectangle =
$$(x+2) \times 15$$
 -----(M1)
= $(6+2) \times 15$
= $8 \times 15 = 120 \text{ cm}^2$ -----(A1)

(a)
$$2x + 3y = 1.9 - ... (1)$$

 $4x + 5y = 3.4 - ... (2)$
(1)X2: $4x + 6y = 3.8 - ... (3)$
(3)-(2): $4x+6y-4x-5y=3.8-3.4 - ... [M1]$
 $y= 0.4 - ... [A1]$
Sub y=0.4 into (1): $2x + 3(0.4) = 1.9 - ... [M1]$
 $2x = 1.9 - 1.2 = 0.7$
 $x = 0.35 - ... [A1]$

(b) Let the number of adult tickets be x, and number of children tickets be y.

 $\begin{array}{c} x+y=120 & ----(1) \\ 2.2x+1.2y=189 & ----(2) \\ From (1): x=120-y---(3) \\ Sub (3) into (2): 2.2(120-y)+1.2y=189 & -----[M1] \\ & 264-2.2y+1.2y=189 \\ y=264-189=75 & -----[A1] \\ Sub y=75 into (3): x=120-75 & -----[M1] \\ & x=45 & -----[A1] \end{array}$

Correct diagram ---[A1], Correct elements ---[A1]

(d) (i)
$$(A \cup B)' = \{8,9,10\}$$
 -----[A1]
(ii) $n(A \cap B)' = 11$ -----[A1]

6

(bi) Mean =
$$\frac{7+9+11+13+13+19+20+21+22+25}{10}$$
 -----[M1]
= 16 -----[A1]
(bii) Mode = 13 -----[A1]
(biii) Middle position = $\frac{10+1}{2}$ = 5.5th position -----[M1]

- (b) Correct scale, axis, label -----[M1] Correct coordinates, straight line -----[M1]
- (c) From the graph, When x = 1.5, y = -1.75 (acceptable range = ± 0.1) -----[A1] When x = -1, y = 2 ------[A1]
- (d) Correct line, label -----[M1]

(1.65, -2) (acceptable range = ± 0.1) -----[A1]